

Northern NY Agricultural Development Program 2016 Project Report APPENDIX

Feeding Strategies & Behavior of Heat-Stressed Calves in NNY

Table 1. Initial body weight (BW) and serum total protein for each treatment, Calf
Heat Stress Study, Chazy, NY, May-September 2016.

		Treatment ¹			
Measurement	CON	FTEMP	FALL	SE	P-value
Number of calves	19	19	20		
Initial BW^2 , lb (kg)	95.7	94.6	97.4	1.8	0.50
	(43.4)	(42.9)	(44.2)	(0.8)	
Serum total protein, g/dL	6.1	5.8	6.0	0.1	0.27

¹Calves were fed 1 of 3 treatments: 1) milk replacer with no added fat (CON); 2) milk replacer with added fat on study days when daily temperature exceeded 78°F (FTEMP), and 3) milk replacer with added fat for all study days (FALL).

²Initial BW was taken when calves were moved to individual hutches at 2 days of age.

Item	Milk Replacer ¹	Starter ²	Milk Energizer ³ (Fat Source)
Composite samples, n	5	5	5
DM, %	91.4 ± 0.2	87.4 ± 0.1	95.5 ± 0.1
CP, % of DM	27.1 ± 0.2	25.9 ± 0.1	6.98 ± 0.07
Soluble protein, % CP	98.1 ± 0.2	17.4 ± 1.0	58.8 ± 1.8
ADF, % of DM	0.34 ± 0.02	13.3 ± 0.2	0.74 ± 0.07
aNDF, % of DM	0.74 ± 0.09	28.4 ± 0.6	1.64 ± 0.12
ME, Mcal/kg	4.76^{4}	-	6.42^5
NFC, % of DM	41.7 ± 0.3	37.3 ± 0.6	22.7 ± 0.3
Acid Hydrolysis Fat, % of			
DM	20.7 ± 0.3	-	63.8 ± 0.1
Ash, % of DM	9.84 ± 0.17	8.44 ± 0.10	4.95 ± 0.32
Calcium, % of DM	0.99 ± 0.02	0.96 ± 0.03	0.29 ± 0.00
Phosphorus, % of DM	0.79 ± 0.01	0.89 ± 0.01	0.38 ± 0.00
Magnesium, % of DM	0.14 ± 0.00	0.47 ± 0.01	0.05 ± 0.00
Potassium, % of DM	2.55 ± 0.02	1.60 ± 0.01	0.83 ± 0.01
Sodium, % of DM	0.97 ± 0.01	0.37 ± 0.02	0.52 ± 0.00
Iron, mg/kg	146 ± 4	267 ± 3	15.4 ± 1.2
Manganese, mg/kg	43.0 ± 1.2	134 ± 2	0.20 ± 0.20
Zinc, mg/kg	71.8 ± 0.9	131 ± 1	3.20 ± 0.20
Copper, mg/kg	15.0 ± 0.5	27.8 ± 0.6	0.20 ± 0.20

Table 2. Data (mean ± standard error) characterizing the analyzed chemicalcomposition of diet ingredients, Calf Heat Stress Study, Chazy, NY, May-September2016.

^{1,2} Poulin Grain, Newport, VT.

³Milk Specialties Global, Eden Prairie, MN.

⁴ME was calculated using the following equation: ME = (0.057 * CP + 0.092 * fat + 0.0395 * lactose) * 0.93 (NRC, 2001). Lactose was calculated by subtracting CP, fat, and ash on a DM basis from 100 (Quigley, 2007).

⁵Personal communication (Jessica Raabe, Milk Specialties Global, Eden Prairie, MN, February 14, 2017).

• /	Treatment ¹				<i>P</i> -value		
-				•	001	FTEMP	
Measurement	CON	FTEMP	FALL	SE	CON	VS.	
					vs. rat	FALL	
Preweaning ³							
ADG, lb/d (kg/d)	1.92	2.03	2.07	0.04	<0.01	0.38	
	(0.87)	(0.92)	(0.94)	(0.02)			
Milk replacer intake, lb/d	2.38	2.56	2.62	0.02	<0.01	<0.01	
(kg/d)	(1.08)	(1.16)	(1.19)	(0.01)			
Starter intake, lb/d (g/d)	0.10 (46)	0.12 (54)	0.12 (55)	0.02 (9)	0.44	0.91	
DMI lb/d (kg/d)	2 49	2 69	2 76	0 02	<0.01	0 10	
2,,	(1 13)	(1.22)	(1.25)	(0.01)	0001	0110	
Water Intake, orts/d (L/d)	2.13	2.57	2.21	0.22	0.36	0.26	
	(2.02)	(2.43)	(2.09)	(0.21)			
Hip Height Change, inches	5.2	5.0	5.0	0.2	0.31	0.82	
(cm)	(13.2)	(12.7)	(12.8)	(0.6)			
Hip Width Change,				0.04	0.96	0.17	
inches (cm)	2.2 (5.7)	2.3 (5.8)	2.2 (5.6)	(0.1)			
Gain/Feed	0.77	0.76	0.75	0.01	0.46	0.93	
Overall ⁴							
ADG, lb/d (kg/d)	1.74	1.76	1.83	0.04	0.42	0.40	
	(0.79)	(0.80)	(0.83)	(0.02)			
Milk replacer intake, lb/d	2.07	2.23	2.29	0.01	<0.01	<0.01	
(kg/d)	(0.94)	(1.01)	(1.04)	(0.00)			
Starter intake, lb/d (g/d)	0.42	0.40	0.43	0.05	0.94	0.68	
	(189)	(181)	(193)	(22)			
DMI, lb/d (kg/d)	2.49	2.62	2.71	0.04	<0.01	0.20	
	(1.13)	(1.19)	(1.23)	(0.02)			
Water Intake, qrts/d (L/d)	2.60	3.0	2.72	0.25	0.42	0.44	
	(2.46)	(2.84)	(2.57)	(0.24)			
Hip Height Change, inches	6.5	6.2	6.5	0.2	0.45	0.48	
(cm)	(16.6)	(15.8)	(16.4)	(0.5)			
Hip Width Change, cm	2.7 (6.8)	2.8 (7.1)	2.8 (7.0)	0.1	0.26	0.75	
Gain/Feed	0.70	0.67	0.67	0.2)	0.04	0.85	

Table 3. Intake and performance of calves fed three strategies of fat supplementation in milk replacer, Calf Heat Stress Study, Chazy, NY, May-September 2016.

¹Calves were fed 1 of 3 treatments: 1) milk replacer with no added fat (CON); 2) milk replacer with added fat on study days when daily temperature exceeded 78°F (FTEMP), and 3) milk replacer with added fat for all study days (FALL). ²Probability for contrast: CON vs Fat (FTEMP + FALL). ³Calves from 2 to 43 days of age receiving full amounts of milk.

⁴Calves from 2 to 57 days of age.

	Treatment ¹				<i>P</i> -value	
Measurement	CON	FTEMP	FALL	SE	CON vs. Fat ²	FTEMP vs. FALL
Body Temperature, °F (°C)	102.4	102.5	102.5	0.03	0.25	0.92
	(39.11)	(39.15)	(39.15)			
Respiration, breaths/min	57	58	63	1	0.04	0.02
Treatment, d	3.3	3.2	2.5	-	0.69	0.60
Skin tent ³ , $\% > 2$ s	8.0	9.4	7.2	-	0.86	0.13
Eye Recession ⁴ , $\% > 2 \text{ mm}$	2.3	1.6	1.5	-	0.99	0.97
Cough Score ⁵ , $\% > 1$	0	0	0	-	-	-
Nasal Discharge Score ⁵ , $\%$ > 1	0.4	0.4	0.4	-	0.99	0.99
Fecal Score ⁵ , $\% > 1$	16.3	15.0	15.5	-	0.25	0.36

Table 4. LS means of body temperature, respiration rate and frequency of health events recorded daily based on categorization of health scores by feeding treatment, Calf Heat Stress Study, Chazy, NY, May-September 2016.

¹Calves were fed 1 of 3 treatments: 1) milk replacer with no added fat (CON); 2) milk replacer with added fat on study days when daily temperature exceeded 78°F (FTEMP), and 3) milk replacer with added fat for all study days (FALL).

²Probability for contrast: CON vs Fat (FTEMP + FALL).

³ Bentley, 2012.

⁴Adapted from Wren, 2011.

⁵Adapted from Peña et al., 2016.

Figure 1. Average Temperature and Temperature Humidity Index by day over study period, Calf Heat Stress Study, Chazy, NY, May-September 2016.

Figure 2. LS Mean body weight (lbs.) for calves fed three fat supplementation strategies from 0 - 8 weeks of age, Calf Heat Stress Study, Chazy, NY, May-September 2016.

Figure 3. LS Mean hip height (inches) for calves fed three fat supplementation strategies from 0 - 8 weeks of age, Calf Heat Stress Study, Chazy, NY, May-September 2016.

Figure 4. LS Mean plasma glucose (mg/dl) for calves fed three fat supplementation strategies from 0 - 8 weeks of age, Calf Heat Stress Study, Chazy, NY, May-September 2016.

Figure 5. LS Mean plasma NEFA (mEq/L) for calves fed three fat supplementation strategies from 0 - 8 weeks of age, Calf Heat Stress Study, Chazy, NY, May-September 2016.

Figure 6. Relationship between temperature humidity index and body temperature of calves housed in hutches in Northern NY during the summer, measured at 3:00 pm daily, Calf Heat Stress Study, Chazy, NY, May-September 2016.

Figure 7. Relationship between temperature humidity index and respiration rate of calves housed in hutches in Northern NY during the summer, measured at 3:00 pm daily, Calf Heat Stress Study, Chazy, NY, May-September 2016.

Figure 8. Relationship between temperature humidity index and lying time of calves housed in hutches in Northern NY during the summer, Calf Heat Stress Study, Chazy, NY, May-September 2016.

Figure 9. Relationship between temperature humidity index and dry matter intake of calves housed in hutches in Northern NY during the summer, Calf Heat Stress Study, Chazy, NY, May-September 2016.

Figure 10. Relationship between temperature humidity index and free choice water intake of calves housed in hutches in Northern NY during the summer, Calf Heat Stress Study, Chazy, NY, May-September 2016.

Figure 11. Relationship between Temperature Humidity Index and free choice water intake of calves housed in hutches in Northern NY; Calf Heat Stress Study, Chazy, NY, May-September 2016.